Papers
Topics
Authors
Recent
2000 character limit reached

Skew quasisymmetric Schur functions and noncommutative Schur functions

Published 6 Jul 2010 in math.CO | (1007.0994v3)

Abstract: Recently a new basis for the Hopf algebra of quasisymmetric functions $QSym$, called quasisymmetric Schur functions, has been introduced by Haglund, Luoto, Mason, van Willigenburg. In this paper we extend the definition of quasisymmetric Schur functions to introduce skew quasisymmetric Schur functions. These functions include both classical skew Schur functions and quasisymmetric Schur functions as examples, and give rise to a new poset $\mathcal{L}_C$ that is analogous to Young's lattice. We also introduce a new basis for the Hopf algebra of noncommutative symmetric functions $NSym$. This basis of $NSym$ is dual to the basis of quasisymmetric Schur functions and its elements are the pre-image of the Schur functions under the forgetful map $\chi: NSym \rightarrow Sym$. We prove that the multiplicative structure constants of the noncommutative Schur functions, equivalently the coefficients of the skew quasisymmetric Schur functions when expanded in the quasisymmetric Schur basis, are nonnegative integers, satisfying a Littlewood-Richardson rule analogue that reduces to the classical Littlewood-Richardson rule under $\chi$. As an application we show that the morphism of algebras from the algebra of Poirier-Reutenauer to $Sym$ factors through $NSym$. We also extend the definition of Schur functions in noncommuting variables of Rosas-Sagan in the algebra $NCSym$ to define quasisymmetric Schur functions in the algebra $NCQSym$. We prove these latter functions refine the former and their properties, and project onto quasisymmetric Schur functions under the forgetful map. Lastly, we show that by suitably labeling $\mathcal{L}_C$, skew quasisymmetric Schur functions arise in the theory of Pieri operators on posets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.