Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An axiomatic formalization of bounded rationality based on a utility-information equivalence (1007.0940v1)

Published 6 Jul 2010 in cs.AI and cs.GT

Abstract: Classic decision-theory is based on the maximum expected utility (MEU) principle, but crucially ignores the resource costs incurred when determining optimal decisions. Here we propose an axiomatic framework for bounded decision-making that considers resource costs. Agents are formalized as probability measures over input-output streams. We postulate that any such probability measure can be assigned a corresponding conjugate utility function based on three axioms: utilities should be real-valued, additive and monotonic mappings of probabilities. We show that these axioms enforce a unique conversion law between utility and probability (and thereby, information). Moreover, we show that this relation can be characterized as a variational principle: given a utility function, its conjugate probability measure maximizes a free utility functional. Transformations of probability measures can then be formalized as a change in free utility due to the addition of new constraints expressed by a target utility function. Accordingly, one obtains a criterion to choose a probability measure that trades off the maximization of a target utility function and the cost of the deviation from a reference distribution. We show that optimal control, adaptive estimation and adaptive control problems can be solved this way in a resource-efficient way. When resource costs are ignored, the MEU principle is recovered. Our formalization might thus provide a principled approach to bounded rationality that establishes a close link to information theory.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pedro A. Ortega (34 papers)
  2. Daniel A. Braun (37 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.