Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local search for stable marriage problems (1007.0859v1)

Published 6 Jul 2010 in cs.AI

Abstract: The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving a SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these lists, an we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We evaluate empirically our algorithm for SM problems by measuring its runtime behaviour and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behaviour and its ability to find a maximum cardinality stable marriage.For SM problems, the number of steps of our algorithm grows only as O(nlog(n)), and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages.Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size despite the NP-hardness of this problem.

Citations (8)

Summary

We haven't generated a summary for this paper yet.