Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exactness of the reduction on étale modules (1006.5808v2)

Published 30 Jun 2010 in math.RT and math.NT

Abstract: We prove the exactness of the reduction map from \'etale $(\phi,\Gamma)$-modules over completed localized group rings of compact open subgroups of unipotent $p$-adic algebraic groups to usual \'etale $(\phi,\Gamma)$-modules over Fontaine's ring. This reduction map is a component of a functor from smooth $p$-power torsion representations of $p$-adic reductive groups (or more generally of Borel subgroups of these) to $(\phi,\Gamma)$-modules. Therefore this gives evidence for this functor---which is intended as some kind of $p$-adic Langlands correspondence for reductive groups---to be exact. We also show that the corresponding higher $\Tor$-functors vanish. Moreover, we give the example of the Steinberg representation as an illustration and show that it is acyclic for this functor to $(\phi,\Gamma)$-modules whenever our reductive group is $\GL_{d+1}(\mathbb{Q}_p)$ for some $d\geq 1$.

Summary

We haven't generated a summary for this paper yet.