Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-linear Liouville and Shrödinger equations in phase space (1006.3682v1)

Published 18 Jun 2010 in hep-th

Abstract: Unitary representations of the Galilei group are studied in phase space, in order to describe classical and quantum systems. Conditions to write in general form the generator of time translation and Lagrangians in phase space are then established. In the classical case, Galilean invariance provides conditions for writing the Liouville operator and Lagrangian for non-linear systems. We analyze, as an example, a generalized kinetic equation where the collision term is local and non-linear. The quantum counter-part of such unitary representations are developed by using the Moyal (or star) product. Then a non-linear Schr\"odinger equation in phase space is derived and analyzed. In this case, an association with the Wigner formalism is established, which provides a physical interpretation for the formalism.

Summary

We haven't generated a summary for this paper yet.