Papers
Topics
Authors
Recent
Search
2000 character limit reached

BKM Lie superalgebras from counting twisted CHL dyons

Published 17 Jun 2010 in hep-th, math.NT, and math.RT | (1006.3472v2)

Abstract: Following Sen[arXiv:0911.1563], we study the counting of (`twisted') BPS states that contribute to twisted helicity trace indices in four-dimensional CHL models with N=4 supersymmetry. The generating functions of half-BPS states, twisted as well as untwisted, are given in terms of multiplicative eta products with the Mathieu group, M_{24}, playing an important role. These multiplicative eta products enable us to construct Siegel modular forms that count twisted quarter-BPS states. The square-roots of these Siegel modular forms turn out be precisely a special class of Siegel modular forms, the dd-modular forms, that have been classified by Clery and Gritsenko[arXiv:0812.3962]. We show that each one of these dd-modular forms arise as the Weyl-Kac-Borcherds denominator formula of a rank-three Borcherds-Kac-Moody Lie superalgebra. The walls of the Weyl chamber are in one-to-one correspondence with the walls of marginal stability in the corresponding CHL model for twisted dyons as well as untwisted ones. This leads to a periodic table of BKM Lie superalgebras with properties that are consistent with physical expectations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.