Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperplane section $\mathbb{OP}^2_0$ of the complex Cayley plane as the homogeneous space $\mathrm{F_4/P_4}$ (1006.3407v2)

Published 17 Jun 2010 in math.AG and math.DG

Abstract: We prove that the exceptional complex Lie group $F_4$ has a transitive action on the hyperplane section of the complex Cayley plane $\mathbb{OP}2$. Our proof is direct and constructive. We use an explicit realization of the vector and spin actions of $\Spin(9,\C) \leq F_4$. Moreover, we identify the stabilizer of the $F_4$-action as a parabolic subgroup $P_4$ (with Levi factor $B_3T_1$) of the complex Lie group $F_4$. In the real case we obtain an analogous realization of $F_4{(-20)}/P_4$.

Summary

We haven't generated a summary for this paper yet.