Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperbolic-sine analogues of Eisenstein series, generalized Hurwitz numbers, and $q$-zeta functions (1006.3339v1)

Published 16 Jun 2010 in math.NT

Abstract: We consider certain double series of Eisenstein type involving hyperbolic-sine functions. We define certain generalized Hurwitz numbers, in terms of which we evaluate those double series. Our main results can be regarded as a certain generalization of well-known results of Hurwitz, Herglotz, Katayama and so on. Our results also include recent formulas of the third-named author which are double analogues of the formulas of Cauchy, Mellin, Ramanujan, Berndt and so on, about certain Dirichlet series involving hyperbolic functions. As an application, we give some evaluation formulas for $q$-zeta functions at positive integers.

Summary

We haven't generated a summary for this paper yet.