Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Categories of integrable $sl(\infty)$-, $o(\infty)$-, $sp(\infty)$-modules (1006.2749v1)

Published 14 Jun 2010 in math.RT

Abstract: We investigate several categories of integrable $sl(\infty)$-, $o(\infty)$-, $sp(\infty)$-modules. In particular, we prove that the category of integrable $sl(\infty)$-, $o(\infty)$-, $sp(\infty)$-modules with finite-dimensional weight spaces is semisimple. The most interesting category we study is the category $\widetilde{\mathrm{Tens}}{\mathfrak{g}}$ of tensor modules. Its objects $M$ are defined as integrable modules of finite Loewy length such that the algebraic dual $M*$ is also integrable and of finite Loewy length. We prove that the simple objects of $\widetilde{\mathrm{Tens}}{\mathfrak{g}}$ are precisely the simple tensor modules, i.e. the simple subquotients of the tensor algebra of the direct sum of the natural and conatural representations. We also study injectives in $\widetilde{\mathrm{Tens}}{\mathfrak{g}}$ and compute the Ext$1$'s between simple modules. Finally, we characterize a certain subcategory $\mathrm{Tens}{\mathfrak{g}}$ of $\widetilde{\mathrm{Tens}}_{\mathfrak{g}}$ as the unique minimal abelian full subcategory of the category of integrable modules which contains a non-trivial module and is closed under tensor product and algebraic dualization.

Summary

We haven't generated a summary for this paper yet.