Papers
Topics
Authors
Recent
2000 character limit reached

Second-order hyperbolic Fuchsian systems. Gowdy spacetimes and the Fuchsian numerical algorithm

Published 13 Jun 2010 in gr-qc and math.AP | (1006.2525v2)

Abstract: This is the second part of a series devoted to the singular initial value problem for second-order hyperbolic Fuchsian systems. In the first part, we defined and investigated this general class of systems, and we established a well-posedness theory in weighted Sobolev spaces. This theory is applied here to the vacuum Einstein equations for Gowdy spacetimes admitting, by definition, two Killing fields satisfying certain geometric conditions. We recover, by more direct and simpler arguments, the well-posedness results established earlier by Rendall and collaborators. In addition, in this paper we introduce a natural approximation scheme, which we refer to as the Fuchsian numerical algorithm and is directly motivated by our general theory. This algorithm provides highly accurate, numerical approximations of the solution to the singular initial value problem. In particular, for the class of Gowdy spacetimes under consideration, various numerical experiments are presented which show the interest and efficiency of the proposed method. Finally, as an application, we numerically construct Gowdy spacetimes containing a smooth, incomplete, non-compact Cauchy horizon.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.