Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effectiveness in RPL, with Applications to Continuous Logic (1006.2197v1)

Published 11 Jun 2010 in math.LO and cs.LO

Abstract: In this paper, we introduce a foundation for computable model theory of rational Pavelka logic (an extension of {\L}ukasiewicz logic) and continuous logic, and prove effective versions of some theorems in model theory. We show how to reduce continuous logic to rational Pavelka logic. We also define notions of computability and decidability of a model for logics with computable, but uncountable, set of truth values; show that provability degree of a formula w.r.t. a linear theory is computable, and use this to carry out an effective Henkin construction. Therefore, for any effectively given consistent linear theory in continuous logic, we effectively produce its decidable model. This is the best possible, since we show that the computable model theory of continuous logic is an extension of computable model theory of classical logic. We conclude with noting that the unique separable model of a separably categorical and computably axiomatizable theory (such as that of a probability space or an $Lp$ Banach lattice) is decidable.

Citations (7)

Summary

We haven't generated a summary for this paper yet.