Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Regret of Parametric Mismatch in Minimum Mean Square Error Estimation (1006.1382v1)

Published 7 Jun 2010 in cs.IT and math.IT

Abstract: This paper studies the effect of parametric mismatch in minimum mean square error (MMSE) estimation. In particular, we consider the problem of estimating the input signal from the output of an additive white Gaussian channel whose gain is fixed, but unknown. The input distribution is known, and the estimation process consists of two algorithms. First, a channel estimator blindly estimates the channel gain using past observations. Second, a mismatched MMSE estimator, optimized for the estimated channel gain, estimates the input signal. We analyze the regret, i.e., the additional mean square error, that is raised in this process. We derive upper-bounds on both absolute and relative regrets. Bounds are expressed in terms of the Fisher information. We also study regret for unbiased, efficient channel estimators, and derive a simple trade-off between Fisher information and relative regret. This trade-off shows that the product of a certain function of relative regret and Fisher information equals the signal-to-noise ratio, independent of the input distribution. The trade-off relation implies that higher Fisher information results to smaller expected relative regret.

Citations (11)

Summary

We haven't generated a summary for this paper yet.