Papers
Topics
Authors
Recent
Search
2000 character limit reached

Pancyclic subgraphs of random graphs

Published 31 May 2010 in math.CO | (1005.5716v2)

Abstract: An $n$-vertex graph is called pancyclic if it contains a cycle of length $t$ for all $3 \leq t \leq n$. In this paper, we study pancyclicity of random graphs in the context of resilience, and prove that if $p \gg n{-1/2}$, then the random graph $G(n,p)$ a.a.s. satisfies the following property: Every Hamiltonian subgraph of $G(n,p)$ with more than $(1/2 + o(1)){n \choose 2}p$ edges is pancyclic. This result is best possible in two ways. First, the range of $p$ is asymptotically tight; second, the proportion 1/2 of edges cannot be reduced. Our theorem extends a classical theorem of Bondy, and is closely related to a recent work of Krivelevich, Lee, and Sudakov. The proof uses a recent result of Schacht (also independently obtained by Conlon and Gowers).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.