2000 character limit reached
Semi-global weak stabilization of bilinear Schrödinger equations (1005.4558v2)
Published 25 May 2010 in math.AP
Abstract: We consider a linear Schr\"odinger equation, on a bounded domain, with bilinear control, representing a quantum particle in an electric field (the control). Recently, Nersesyan proposed explicit feedback laws and proved the existence of a sequence of times $(t_n)_{n \in \mathbb{N}}$ for which the values of the solution of the closed loop system converge weakly in $H2$ to the ground state. Here, we prove the convergence of the whole solution, as $t \rightarrow + \infty$. The proof relies on control Lyapunov functions and an adaptation of the LaSalle invariance principle to PDEs.