Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unital q-positive maps on M_2(\C) and a related E_0-semigroup result (1005.4404v1)

Published 24 May 2010 in math.FA and math.OA

Abstract: From previous work, we know how to obtain type II_0 E_0-semigroups using boundary weight doubles (\phi, \nu), where \phi: M_n(\C) \to M_n(\C) is a unital q-positive map and \nu is a normalized unbounded boundary weight over L2(0, \infty). In this paper, we classify the unital q-positive maps \phi: M_2(\C) \to M_2(\C). We find that every unital q-pure map \phi: M_2(\C) \to M_2(\C) is either rank one or invertible. We also examine the case n=3, finding the limit maps L_\phi for all unital q-positive maps \phi: M_3(\C) \to M_3(\C). In conclusion, we present a cocycle conjugacy result for E_0-semigroups induced by boundary weight doubles (\phi, \nu) when \nu has the form \nu(\sqrt{I - \Lambda(1)} B \sqrt{I - \Lambda(1)})=(f,Bf).

Summary

We haven't generated a summary for this paper yet.