Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application Of Fuzzy System In Segmentation Of MRI Brain Tumor (1005.4292v1)

Published 24 May 2010 in cs.CV

Abstract: Segmentation of images holds an important position in the area of image processing. It becomes more important whi le typically dealing with medical images where presurgery and post surgery decisions are required for the purpose of initiating and speeding up the recovery process. Segmentation of 3-D tumor structures from magnetic resonance images (MRI) is a very challenging problem due to the variability of tumor geometry and intensity patterns. Level set evolution combining global smoothness with the flexibility of topology changes offers significant advantages over the conventional statistical classification followed by mathematical morphology. Level set evolution with constant propagation needs to be initialized either completely inside or outside the tumor and can leak through weak or missing boundary parts. Replacing the constant propagation term by a statistical force overcomes these limitations and results in a convergence to a stable solution. Using MR images presenting tumors, probabilities for background and tumor regions are calculated from a pre- and post-contrast difference image and mixture modeling fit of the histogram. The whole image is used for initialization of the level set evolution to segment the tumor boundaries.

Citations (4)

Summary

We haven't generated a summary for this paper yet.