2000 character limit reached
Cluster tilting objects in generalized higher cluster categories (1005.3564v2)
Published 19 May 2010 in math.RT
Abstract: We prove the existence of an $m$-cluster tilting object in a generalized $m$-cluster category which is $(m+1)$-Calabi-Yau and Hom-finite, arising from an $(m+2)$-Calabi-Yau dg algebra. This is a generalization of the result for the ${m = 1}$ case in Amiot's Ph.~D.~thesis. Our results apply in particular to higher cluster categories associated to suitable finite-dimensional algebras of finite global dimension, and higher cluster categories associated to Ginzburg dg categories coming from suitable graded quivers with superpotential.