Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cyclic sieving, promotion, and representation theory (1005.2568v1)

Published 14 May 2010 in math.CO and math.RT

Abstract: We prove a collection of conjectures of D. White \cite{WComm}, as well as some related conjectures of Abuzzahab-Korson-Li-Meyer \cite{AKLM} and of Reiner and White \cite{ReinerComm}, \cite{WComm}, regarding the cyclic sieving phenomenon of Reiner, Stanton, and White \cite{RSWCSP} as it applies to jeu-de-taquin promotion on rectangular tableaux. To do this, we use Kazhdan-Lusztig theory and a characterization of the dual canonical basis of $\mathbb{C}[x_{11}, ..., x_{nn}]$ due to Skandera \cite{SkanNNDCB}. Afterwards, we extend our results to analyzing the fixed points of a dihedral action on rectangular tableaux generated by promotion and evacuation, suggesting a possible sieving phenomenon for dihedral groups. Finally, we give applications of this theory to cyclic sieving phenomena involving reduced words for the long elements of hyperoctohedral groups and noncrossing partitions.

Summary

We haven't generated a summary for this paper yet.