Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-sided estimates for stock price distribution densities in jump-diffusion models (1005.1917v1)

Published 11 May 2010 in q-fin.GN

Abstract: We consider uncorrelated Stein-Stein, Heston, and Hull-White models and their perturbations by compound Poisson processes with jump amplitudes distributed according to a double exponential law. Similar perturbations of the Black-Scholes model were studied by S. Kou. For perturbed stochastic volatility models, we obtain two-sided estimates for the stock price distribution density and compare the tail behavior of this density before and after perturbation. It is shown that if the value of the parameter, characterizing the right tail of the double exponential law, is small, then the stock price density in the perturbed model decays slower than the density in the original model. On the other hand, if the value of this parameter is large, then there are no significant changes in the behavior of the stock price distribution density.

Summary

We haven't generated a summary for this paper yet.