Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The classification of irreducible admissible mod p representations of a p-adic GL_n (1005.1713v2)

Published 11 May 2010 in math.NT and math.RT

Abstract: Let F be a finite extension of Q_p. Using the mod p Satake transform, we define what it means for an irreducible admissible smooth representation of an F-split p-adic reductive group over \bar F_p to be supersingular. We then give the classification of irreducible admissible smooth GL_n(F)-representations over \bar F_p in terms of supersingular representations. As a consequence we deduce that supersingular is the same as supercuspidal. These results generalise the work of Barthel-Livne for n = 2. For general split reductive groups we obtain similar results under stronger hypotheses.

Summary

We haven't generated a summary for this paper yet.