Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Markov-Zariski topology of an abelian group (1005.1149v1)

Published 7 May 2010 in math.GR, math.AG, and math.GN

Abstract: According to Markov, a subset of an abelian group G of the form {x in G: nx=a}, for some integer n and some element a of G, is an elementary algebraic set; finite unions of elementary algebraic sets are called algebraic sets. We prove that a subset of an abelian group G is algebraic if and only if it is closed in every precompact (=totally bounded) Hausdorff group topology on G. The family of all algebraic subsets of an abelian group G forms the family of closed subsets of a unique Noetherian T_1 topology on G called the Zariski, or verbal, topology of G. We investigate the properties of this topology. In particular, we show that the Zariski topology is always hereditarily separable and Frechet-Urysohn. For a countable family F of subsets of an abelian group G of cardinality at most the continuum, we construct a precompact metric group topology T on G such that the T-closure of each member of F coincides with its Zariski closure. As an application, we provide a characterization of the subsets of G that are dense in some Hausdorff group topology on G, and we show that such a topology, if it exists, can always be chosen so that it is precompact and metric. This provides a partial answer to a long-standing problem of Markov.

Summary

We haven't generated a summary for this paper yet.