Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Qualitative Behaviour of Solutions for the Two-Phase Navier-Stokes Equations with Surface Tension (1005.1023v2)

Published 6 May 2010 in math.AP, math-ph, and math.MP

Abstract: The two-phase free boundary value problem for the isothermal Navier-Stokes system is studied for general bounded geometries in absence of phase transitions, external forces and boundary contacts. It is shown that the problem is well-posed in an Lp-setting, and that it generates a local semiflow on the induced phase manifold. If the phases are connected, the set of equilibria of the system forms a (n+1)-dimensional manifold, each equilibrium is stable, and it is shown that global solutions which do not develop singularities converge to an equilibrium as time goes to infinity. The latter is proved by means of the energy functional combined with the generalized principle of linearized stability.

Summary

We haven't generated a summary for this paper yet.