Papers
Topics
Authors
Recent
Search
2000 character limit reached

Randomized hybrid linear modeling by local best-fit flats

Published 5 May 2010 in cs.CV | (1005.0858v1)

Abstract: The hybrid linear modeling problem is to identify a set of d-dimensional affine sets in a D-dimensional Euclidean space. It arises, for example, in object tracking and structure from motion. The hybrid linear model can be considered as the second simplest (behind linear) manifold model of data. In this paper we will present a very simple geometric method for hybrid linear modeling based on selecting a set of local best fit flats that minimize a global l1 error measure. The size of the local neighborhoods is determined automatically by the Jones' l2 beta numbers; it is proven under certain geometric conditions that good local neighborhoods exist and are found by our method. We also demonstrate how to use this algorithm for fast determination of the number of affine subspaces. We give extensive experimental evidence demonstrating the state of the art accuracy and speed of the algorithm on synthetic and real hybrid linear data.

Citations (46)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.