Papers
Topics
Authors
Recent
2000 character limit reached

Tricolored Lattice Gauge Theory with Randomness: Fault-Tolerance in Topological Color Codes

Published 5 May 2010 in quant-ph and cond-mat.dis-nn | (1005.0777v2)

Abstract: We compute the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates, when both qubit and measurement errors are present. By mapping the problem onto a statistical-mechanical three-dimensional disordered Ising lattice gauge theory, we estimate via large-scale Monte Carlo simulations that color codes are stable against 4.5(2)% errors. Furthermore, by evaluating the skewness of the Wilson loop distributions, we introduce a very sensitive probe to locate first-order phase transitions in lattice gauge theories.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.