Papers
Topics
Authors
Recent
Search
2000 character limit reached

An extremal theorem in the hypercube

Published 4 May 2010 in math.CO | (1005.0582v1)

Abstract: The hypercube Q_n is the graph whose vertex set is {0,1}n and where two vertices are adjacent if they differ in exactly one coordinate. For any subgraph H of the cube, let ex(Q_n, H) be the maximum number of edges in a subgraph of Q_n which does not contain a copy of H. We find a wide class of subgraphs H, including all previously known examples, for which ex(Q_n, H) = o(e(Q_n)). In particular, our method gives a unified approach to proving that ex(Q_n, C_{2t}) = o(e(Q_n)) for all t >= 4 other than 5.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.