Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semiclassical measures for the Schrödinger equation on the torus (1005.0296v2)

Published 29 Apr 2010 in math.FA and math.AP

Abstract: In this article, the structure of semiclassical measures for solutions to the linear Schr\"{o}dinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality, saying that the $L2$-norm of a solution on any open subset of the torus controls the full $L2$-norm.

Summary

We haven't generated a summary for this paper yet.