Graph Sparsification by Edge-Connectivity and Random Spanning Trees
Abstract: We present new approaches to constructing graph sparsifiers --- weighted subgraphs for which every cut has the same value as the original graph, up to a factor of $(1 \pm \epsilon)$. Our first approach independently samples each edge $uv$ with probability inversely proportional to the edge-connectivity between $u$ and $v$. The fact that this approach produces a sparsifier resolves a question posed by Bencz\'ur and Karger (2002). Concurrent work of Hariharan and Panigrahi also resolves this question. Our second approach constructs a sparsifier by forming the union of several uniformly random spanning trees. Both of our approaches produce sparsifiers with $O(n \log2(n)/\epsilon2)$ edges. Our proofs are based on extensions of Karger's contraction algorithm, which may be of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.