Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Percolation of randomly distributed growing clusters: Finite Size Scaling and Critical Exponents (1004.5028v1)

Published 28 Apr 2010 in cond-mat.stat-mech

Abstract: We study the percolation properties of the growing clusters model. In this model, a number of seeds placed on random locations on a lattice are allowed to grow with a constant velocity to form clusters. When two or more clusters eventually touch each other they immediately stop their growth. The model exhibits a discontinuous transition for very low values of the seed concentration $p$ and a second, non-trivial continuous phase transition for intermediate $p$ values. Here we study in detail this continuous transition that separates a phase of finite clusters from a phase characterized by the presence of a giant component. Using finite size scaling and large scale Monte Carlo simulations we determine the value of the percolation threshold where the giant component first appears, and the critical exponents that characterize the transition. We find that the transition belongs to a different universality class from the standard percolation transition.

Summary

We haven't generated a summary for this paper yet.