Compact $κ$-deformation and spectral triples
Abstract: We construct discrete versions of $\kappa$-Minkowski space related to a certain compactness of the time coordinate. We show that these models fit into the framework of noncommutative geometry in the sense of spectral triples. The dynamical system of the underlying discrete groups (which include some Baumslag--Solitar groups) is heavily used in order to construct \emph{finitely summable} spectral triples. This allows to bypass an obstruction to finite-summability appearing when using the common regular representation. The dimension of these spectral triples is unrelated to the number of coordinates defining the $\kappa$-deformed Minkowski spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.