Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Gibbs distribution that learns from GA dynamics (1004.3725v1)

Published 21 Apr 2010 in cs.NE

Abstract: A general procedure of average-case performance evaluation for population dynamics such as genetic algorithms (GAs) is proposed and its validity is numerically examined. We introduce a learning algorithm of Gibbs distributions from training sets which are gene configurations (strings) generated by GA in order to figure out the statistical properties of GA from the view point of thermodynamics. The learning algorithm is constructed by means of minimization of the Kullback-Leibler information between a parametric Gibbs distribution and the empirical distribution of gene configurations. The formulation is applied to the solvable probabilistic models having multi-valley energy landscapes, namely, the spin glass chain and the Sherrington-Kirkpatrick model. By using computer simulations, we discuss the asymptotic behaviour of the effective temperature scheduling and the residual energy induced by the GA dynamics.

Summary

We haven't generated a summary for this paper yet.