Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating the minimum directed tree cover (1004.3668v3)

Published 21 Apr 2010 in cs.DS, cs.DM, and math.OC

Abstract: Given a directed graph $G$ with non negative cost on the arcs, a directed tree cover of $G$ is a rooted directed tree such that either head or tail (or both of them) of every arc in $G$ is touched by $T$. The minimum directed tree cover problem (DTCP) is to find a directed tree cover of minimum cost. The problem is known to be $NP$-hard. In this paper, we show that the weighted Set Cover Problem (SCP) is a special case of DTCP. Hence, one can expect at best to approximate DTCP with the same ratio as for SCP. We show that this expectation can be satisfied in some way by designing a purely combinatorial approximation algorithm for the DTCP and proving that the approximation ratio of the algorithm is $\max{2, \ln(D+)}$ with $D+$ is the maximum outgoing degree of the nodes in $G$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.