Approximation Algorithms for Dominating Set in Disk Graphs (1004.3320v1)
Abstract: We consider the problem of finding a lowest cost dominating set in a given disk graph containing $n$ disks. The problem has been extensively studied on subclasses of disk graphs, yet the best known approximation for disk graphs has remained $O(\log n)$ -- a bound that is asymptotically no better than the general case. We improve the status quo in two ways: for the unweighted case, we show how to obtain a PTAS using the framework recently proposed (independently)by Mustafa and Ray [SoCG 09] and by Chan and Har-Peled [SoCG 09]; for the weighted case where each input disk has an associated rational weight with the objective of finding a minimum cost dominating set, we give a randomized algorithm that obtains a dominating set whose weight is within a factor $2{O(\log* n)}$ of a minimum cost solution, with high probability -- the technique follows the framework proposed recently by Varadarajan [STOC 10].