Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Rates of Capacity-Achieving Codes Are Convex (1004.2683v1)

Published 15 Apr 2010 in cs.IT and math.IT

Abstract: Motivated by a wide-spread use of convex optimization techniques, convexity properties of bit error rate of the maximum likelihood detector operating in the AWGN channel are studied for arbitrary constellations and bit mappings, which also includes coding under maximum-likelihood decoding. Under this generic setting, the pairwise probability of error and bit error rate are shown to be convex functions of the SNR and noise power in the high SNR/low noise regime with explicitly-determined boundary. Any code, including capacity-achieving ones, whose decision regions include the hardened noise spheres (from the noise sphere hardening argument in the channel coding theorem) satisfies this high SNR requirement and thus has convex error rates in both SNR and noise power. We conjecture that all capacity-achieving codes have convex error rates.

Citations (3)

Summary

We haven't generated a summary for this paper yet.