Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Recursive Segments for Discourse Parsing (1003.5372v1)

Published 28 Mar 2010 in cs.CL

Abstract: Automatically detecting discourse segments is an important preliminary step towards full discourse parsing. Previous research on discourse segmentation have relied on the assumption that elementary discourse units (EDUs) in a document always form a linear sequence (i.e., they can never be nested). Unfortunately, this assumption turns out to be too strong, for some theories of discourse like SDRT allows for nested discourse units. In this paper, we present a simple approach to discourse segmentation that is able to produce nested EDUs. Our approach builds on standard multi-class classification techniques combined with a simple repairing heuristic that enforces global coherence. Our system was developed and evaluated on the first round of annotations provided by the French Annodis project (an ongoing effort to create a discourse bank for French). Cross-validated on only 47 documents (1,445 EDUs), our system achieves encouraging performance results with an F-score of 73% for finding EDUs.

Citations (49)

Summary

We haven't generated a summary for this paper yet.