Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The asymptotic value of Randic index for trees (1003.4810v1)

Published 25 Mar 2010 in math.CO and cs.DM

Abstract: Let $\mathcal{T}_n$ denote the set of all unrooted and unlabeled trees with $n$ vertices, and $(i,j)$ a double-star. By assuming that every tree of $\mathcal{T}_n$ is equally likely, we show that the limiting distribution of the number of occurrences of the double-star $(i,j)$ in $\mathcal{T}_n$ is normal. Based on this result, we obtain the asymptotic value of Randi\'c index for trees. Fajtlowicz conjectured that for any connected graph the Randi\'c index is at least the average distance. Using this asymptotic value, we show that this conjecture is true not only for almost all connected graphs but also for almost all trees.

Citations (4)

Summary

We haven't generated a summary for this paper yet.