Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Verifying Temporal Regular Properties of Abstractions of Term Rewriting Systems (1003.4803v1)

Published 25 Mar 2010 in cs.LO

Abstract: The tree automaton completion is an algorithm used for proving safety properties of systems that can be modeled by a term rewriting system. This representation and verification technique works well for proving properties of infinite systems like cryptographic protocols or more recently on Java Bytecode programs. This algorithm computes a tree automaton which represents a (regular) over approximation of the set of reachable terms by rewriting initial terms. This approach is limited by the lack of information about rewriting relation between terms. Actually, terms in relation by rewriting are in the same equivalence class: there are recognized by the same state in the tree automaton. Our objective is to produce an automaton embedding an abstraction of the rewriting relation sufficient to prove temporal properties of the term rewriting system. We propose to extend the algorithm to produce an automaton having more equivalence classes to distinguish a term or a subterm from its successors w.r.t. rewriting. While ground transitions are used to recognize equivalence classes of terms, epsilon-transitions represent the rewriting relation between terms. From the completed automaton, it is possible to automatically build a Kripke structure abstracting the rewriting sequence. States of the Kripke structure are states of the tree automaton and the transition relation is given by the set of epsilon-transitions. States of the Kripke structure are labelled by the set of terms recognized using ground transitions. On this Kripke structure, we define the Regular Linear Temporal Logic (R-LTL) for expressing properties. Such properties can then be checked using standard model checking algorithms. The only difference between LTL and R-LTL is that predicates are replaced by regular sets of acceptable terms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.