Game interpretation of Kolmogorov complexity (1003.4712v1)
Abstract: The Kolmogorov complexity function K can be relativized using any oracle A, and most properties of K remain true for relativized versions. In section 1 we provide an explanation for this observation by giving a game-theoretic interpretation and showing that all "natural" properties are either true for all sufficiently powerful oracles or false for all sufficiently powerful oracles. This result is a simple consequence of Martin's determinacy theorem, but its proof is instructive: it shows how one can prove statements about Kolmogorov complexity by constructing a special game and a winning strategy in this game. This technique is illustrated by several examples (total conditional complexity, bijection complexity, randomness extraction, contrasting plain and prefix complexities).