Game interpretation of Kolmogorov complexity
Abstract: The Kolmogorov complexity function K can be relativized using any oracle A, and most properties of K remain true for relativized versions. In section 1 we provide an explanation for this observation by giving a game-theoretic interpretation and showing that all "natural" properties are either true for all sufficiently powerful oracles or false for all sufficiently powerful oracles. This result is a simple consequence of Martin's determinacy theorem, but its proof is instructive: it shows how one can prove statements about Kolmogorov complexity by constructing a special game and a winning strategy in this game. This technique is illustrated by several examples (total conditional complexity, bijection complexity, randomness extraction, contrasting plain and prefix complexities).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.