Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hopf monads on monoidal categories (1003.1920v4)

Published 9 Mar 2010 in math.QA and math.CT

Abstract: We define Hopf monads on an arbitrary monoidal category, extending the definition given previously for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode. Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid. Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C. The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford-Majid bosonization of Hopf algebras). We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedler's Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).

Citations (122)

Summary

We haven't generated a summary for this paper yet.