Randomly removing g handles at once (1003.1426v1)
Abstract: Indyk and Sidiropoulos (2007) proved that any orientable graph of genus $g$ can be probabilistically embedded into a graph of genus $g-1$ with constant distortion. Viewing a graph of genus $g$ as embedded on the surface of a sphere with $g$ handles attached, Indyk and Sidiropoulos' method gives an embedding into a distribution over planar graphs with distortion $2{O(g)}$, by iteratively removing the handles. By removing all $g$ handles at once, we present a probabilistic embedding with distortion $O(g2)$ for both orientable and non-orientable graphs. Our result is obtained by showing that the nimum-cut graph of Erickson and Har Peled (2004) has low dilation, and then randomly cutting this graph out of the surface using the Peeling Lemma of Lee and Sidiropoulos (2009).