Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric Estimation and On-Line Prediction for General Stationary Ergodic Sources (1002.4453v3)

Published 24 Feb 2010 in cs.IT, cs.AI, math.IT, and math.PR

Abstract: We proposed a learning algorithm for nonparametric estimation and on-line prediction for general stationary ergodic sources. We prepare histograms each of which estimates the probability as a finite distribution, and mixture them with weights to construct an estimator. The whole analysis is based on measure theory. The estimator works whether the source is discrete or continuous. If it is stationary ergodic, then the measure theoretically given Kullback-Leibler information divided by the sequence length $n$ converges to zero as $n$ goes to infinity. In particular, for continuous sources, the method does not require existence of a probability density function.

Summary

We haven't generated a summary for this paper yet.