Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Flooding over Manhattan (1002.3757v1)

Published 19 Feb 2010 in cs.DC

Abstract: We consider a Mobile Ad-hoc NETwork (MANET) formed by n agents that move at speed V according to the Manhattan Random-Way Point model over a square region of side length L. The resulting stationary (agent) spatial probability distribution is far to be uniform: the average density over the "central zone" is asymptotically higher than that over the "suburb". Agents exchange data iff they are at distance at most R within each other. We study the flooding time of this MANET: the number of time steps required to broadcast a message from one source agent to all agents of the network in the stationary phase. We prove the first asymptotical upper bound on the flooding time. This bound holds with high probability, it is a decreasing function of R and V, and it is tight for a wide and relevant range of the network parameters (i.e. L, R and V). A consequence of our result is that flooding over the sparse and highly-disconnected suburb can be as fast as flooding over the dense and connected central zone. Rather surprisingly, this property holds even when R is exponentially below the connectivity threshold of the MANET and the speed V is very low.

Citations (14)

Summary

We haven't generated a summary for this paper yet.