Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secured Cryptographic Key Generation From Multimodal Biometrics Feature Level Fusion Of Fingerprint And Iris (1002.2527v1)

Published 12 Feb 2010 in cs.CR

Abstract: Human users have a tough time remembering long cryptographic keys. Hence, researchers, for so long, have been examining ways to utilize biometric features of the user instead of a memorable password or passphrase, in an effort to generate strong and repeatable cryptographic keys. Our objective is to incorporate the volatility of the users biometric features into the generated key, so as to make the key unguessable to an attacker lacking significant knowledge of the users biometrics. We go one step further trying to incorporate multiple biometric modalities into cryptographic key generation so as to provide better security. In this article, we propose an efficient approach based on multimodal biometrics (Iris and fingerprint) for generation of secure cryptographic key. The proposed approach is composed of three modules namely, 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. Initially, the features, minutiae points and texture properties are extracted from the fingerprint and iris images respectively. Subsequently, the extracted features are fused together at the feature level to construct the multibiometric template. Finally, a 256bit secure cryptographic key is generated from the multibiometric template. For experimentation, we have employed the fingerprint images obtained from publicly available sources and the iris images from CASIA Iris Database. The experimental results demonstrate the effectiveness of the proposed approach.

Summary

We haven't generated a summary for this paper yet.