Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistence Diagrams and the Heat Equation Homotopy (1002.1937v1)

Published 9 Feb 2010 in cs.CG

Abstract: Persistence homology is a tool used to measure topological features that are present in data sets and functions. Persistence pairs births and deaths of these features as we iterate through the sublevel sets of the data or function of interest. I am concerned with using persistence to characterize the difference between two functions f, g : M -> R, where M is a topological space. Furthermore, I formulate a homotopy from g to f by applying the heat equation to the difference function g-f. By stacking the persistence diagrams associated with this homotopy, we create a vineyard of curves that connect the points in the diagram for f with the points in the diagram for g. I look at the diagrams where M is a square, a sphere, a torus, and a Klein bottle. Looking at these four topologies, we notice trends (and differences) as the persistence diagrams change with respect to time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.