Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum and maximum against k lies (1002.0562v1)

Published 2 Feb 2010 in cs.DS, cs.CC, and cs.GT

Abstract: A neat 1972 result of Pohl asserts that [3n/2]-2 comparisons are sufficient, and also necessary in the worst case, for finding both the minimum and the maximum of an n-element totally ordered set. The set is accessed via an oracle for pairwise comparisons. More recently, the problem has been studied in the context of the Renyi-Ulam liar games, where the oracle may give up to k false answers. For large k, an upper bound due to Aigner shows that (k+O(\sqrt{k}))n comparisons suffice. We improve on this by providing an algorithm with at most (k+1+C)n+O(k3) comparisons for some constant C. The known lower bounds are of the form (k+1+c_k)n-D, for some constant D, where c_0=0.5, c_1=23/32=0.71875, and c_k=\Omega(2{-5k/4}) as k goes to infinity.

Citations (3)

Summary

We haven't generated a summary for this paper yet.