Papers
Topics
Authors
Recent
2000 character limit reached

The Complexity of Approximating Bounded-Degree Boolean #CSP (Extended Abstract)

Published 27 Jan 2010 in cs.CC | (1001.4987v2)

Abstract: The degree of a CSP instance is the maximum number of times that a variable may appear in the scope of constraints. We consider the approximate counting problem for Boolean CSPs with bounded-degree instances, for constraint languages containing the two unary constant relations {0} and {1}. When the maximum degree is at least 25 we obtain a complete classification of the complexity of this problem. It is exactly solvable in polynomial-time if every relation in the constraint language is affine. It is equivalent to the problem of approximately counting independent sets in bipartite graphs if every relation can be expressed as conjunctions of {0}, {1} and binary implication. Otherwise, there is no FPRAS unless NP=RP. For lower degree bounds, additional cases arise in which the complexity is related to the complexity of approximately counting independent sets in hypergraphs.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.