Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Exponential Sums, Nowton identities and Dickson Polynomials over Finite Fields (1001.4305v1)

Published 25 Jan 2010 in cs.IT and math.IT

Abstract: Let $\mathbb{F}{q}$ be a finite field, $\mathbb{F}{qs}$ be an extension of $\mathbb{F}q$, let $f(x)\in \mathbb{F}_q[x]$ be a polynomial of degree $n$ with $\gcd(n,q)=1$. We present a recursive formula for evaluating the exponential sum $\sum{c\in \mathbb{F}{qs}}\chi{(s)}(f(x))$. Let $a$ and $b$ be two elements in $\mathbb{F}_q$ with $a\neq 0$, $u$ be a positive integer. We obtain an estimate for the exponential sum $\sum{c\in \mathbb{F}*_{qs}}\chi{(s)}(acu+bc{-1})$, where $\chi{(s)}$ is the lifting of an additive character $\chi$ of $\mathbb{F}_q$. Some properties of the sequences constructed from these exponential sums are provided also.

Summary

We haven't generated a summary for this paper yet.