Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of Defect proneness Using Design complexity Measurements in Object- Oriented Software (1001.3555v1)

Published 20 Jan 2010 in cs.SE

Abstract: Software engineering is continuously facing the challenges of growing complexity of software packages and increased level of data on defects and drawbacks from software production process. This makes a clarion call for inventions and methods which can enable a more reusable, reliable, easily maintainable and high quality software systems with deeper control on software generation process. Quality and productivity are indeed the two most important parameters for controlling any industrial process. Implementation of a successful control system requires some means of measurement. Software metrics play an important role in the management aspects of the software development process such as better planning, assessment of improvements, resource allocation and reduction of unpredictability. The process involving early detection of potential problems, productivity evaluation and evaluating external quality factors such as reusability, maintainability, defect proneness and complexity are of utmost importance. Here we discuss the application of CK metrics and estimation model to predict the external quality parameters for optimizing the design process and production process for desired levels of quality. Estimation of defect-proneness in object-oriented system at design level is developed using a novel methodology where models of relationship between CK metrics and defect-proneness index is achieved. A multifunctional estimation approach captures the correlation between CK metrics and defect proneness level of software modules.

Citations (25)

Summary

We haven't generated a summary for this paper yet.