On the inference of large phylogenies with long branches: How long is too long? (1001.3480v1)
Abstract: Recent work has highlighted deep connections between sequence-length requirements for high-probability phylogeny reconstruction and the related problem of the estimation of ancestral sequences. In [Daskalakis et al.'09], building on the work of [Mossel'04], a tight sequence-length requirement was obtained for the CFN model. In particular the required sequence length for high-probability reconstruction was shown to undergo a sharp transition (from $O(\log n)$ to $\hbox{poly}(n)$, where $n$ is the number of leaves) at the "critical" branch length $\critmlq$ (if it exists) of the ancestral reconstruction problem. Here we consider the GTR model. For this model, recent results of [Roch'09] show that the tree can be accurately reconstructed with sequences of length $O(\log(n))$ when the branch lengths are below $\critksq$, known as the Kesten-Stigum (KS) bound. Although for the CFN model $\critmlq = \critksq$, it is known that for the more general GTR models one has $\critmlq \geq \critksq$ with a strict inequality in many cases. Here, we show that this phenomenon also holds for phylogenetic reconstruction by exhibiting a family of symmetric models $Q$ and a phylogenetic reconstruction algorithm which recovers the tree from $O(\log n)$-length sequences for some branch lengths in the range $(\critksq,\critmlq)$. Second we prove that phylogenetic reconstruction under GTR models requires a polynomial sequence-length for branch lengths above $\critmlq$.