Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A finiteness structure on resource terms (1001.3219v1)

Published 19 Jan 2010 in cs.LO

Abstract: In our paper "Uniformity and the Taylor expansion of ordinary lambda-terms" (with Laurent Regnier), we studied a translation of lambda-terms as infinite linear combinations of resource lambda-terms, from a calculus similar to Boudol's lambda-calculus with resources and based on ideas coming from differential linear logic and differential lambda-calculus. The good properties of this translation wrt. beta-reduction were guaranteed by a coherence relation on resource terms: normalization is "linear and stable" (in the sense of the coherence space semantics of linear logic) wrt. this coherence relation. Such coherence properties are lost when one considers non-deterministic or algebraic extensions of the lambda-calculus (the algebraic lambda-calculus is an extension of the lambda-calculus where terms can be linearly combined). We introduce a "finiteness structure" on resource terms which induces a linearly topologized vector space structure on terms and prevents the appearance of infinite coefficients during reduction, in typed settings.

Citations (27)

Summary

We haven't generated a summary for this paper yet.