Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

A Topological derivative based image segmentation for sign language recognition system using isotropic filter (1001.1968v1)

Published 12 Jan 2010 in cs.CV

Abstract: The need of sign language is increasing radically especially to hearing impaired community. Only few research groups try to automatically recognize sign language from video, colored gloves and etc. Their approach requires a valid segmentation of the data that is used for training and of the data that is used to be recognized. Recognition of a sign language image sequence is challenging because of the variety of hand shapes and hand motions. Here, this paper proposes to apply a combination of image segmentation with restoration using topological derivatives for achieving high recognition accuracy. Image quality measures are conceded here to differentiate the methods both subjectively as well as objectively. Experiments show that the additional use of the restoration before segmenting the postures significantly improves the correct rate of hand detection, and that the discrete derivatives yields a high rate of discrimination between different static hand postures as well as between hand postures and the scene background. Eventually, the research is to contribute to the implementation of automated sign language recognition system mainly established for the welfare purpose.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.